Evolution and Design Principles of the Diverse Chloroplast Transit Peptides
نویسندگان
چکیده
Chloroplasts are present in organisms belonging to the kingdom Plantae. These organelles are thought to have originated from photosynthetic cyanobacteria through endosymbiosis. During endosymbiosis, most cyanobacterial genes were transferred to the host nucleus. Therefore, most chloroplast proteins became encoded in the nuclear genome and must return to the chloroplast after translation. The N-terminal cleavable transit peptide (TP) is necessary and sufficient for the import of nucleus-encoded interior chloroplast proteins. Over the past decade, extensive research on the TP has revealed many important characteristic features of TPs. These studies have also shed light on the question of how the many diverse TPs could have evolved to target specific proteins to the chloroplast. In this review, we summarize the characteristic features of TPs. We also highlight recent advances in our understanding of TP evolution and provide future perspectives about this important research area.
منابع مشابه
Chloroplast transit peptides from the green alga Chlamydomonas reinhardtii share features with both mitochondrial and higher plant chloroplast presequences.
Chloroplast transit peptides from the green alga Chlamydomonas reinhardtii have been analyzed and compared with chloroplast transit peptides from higher plants and mitochondrial targeting peptides from yeast, Neurospora and higher eukaryotes. In terms of length and amino acid composition, chloroplast transit peptides from C. reinhardtii are more similar to mitochondrial targetting peptides than...
متن کاملPii: S0962-8924(00)01833-x
PII: S0962-8924(00)01833-X The family of plant organelles, collectively known as plastids, are widely accepted to have evolved from free-living cyanobacteria through the process of endosymbiosis. Although a modern plastid still retains a semi-autonomous genome, its coding capacity has been reduced to only 100–200 genes. The now classic assumption of the endosymbiotic theory, which was initially...
متن کاملEvolutionary pressures on apicoplast transit peptides.
Malaria parasites (species of the genus Plasmodium) harbor a relict chloroplast (the apicoplast) that is the target of novel antimalarials. Numerous nuclear-encoded proteins are translocated into the apicoplast courtesy of a bipartite N-terminal extension. The first component of the bipartite leader resembles a standard signal peptide present at the N-terminus of secreted proteins that enter th...
متن کاملArabidopsis nuclear-encoded plastid transit peptides contain multiple sequence subgroups with distinctive chloroplast-targeting sequence motifs.
The N-terminal transit peptides of nuclear-encoded plastid proteins are necessary and sufficient for their import into plastids, but the information encoded by these transit peptides remains elusive, as they have a high sequence diversity and lack consensus sequences or common sequence motifs. Here, we investigated the sequence information contained in transit peptides. Hierarchical clustering ...
متن کاملMany parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus.
We used DNA sequencing and gel blot surveys to assess the integrity of the chloroplast gene infA, which codes for translation initiation factor 1, in >300 diverse angiosperms. Whereas most angiosperms appear to contain an intact chloroplast infA gene, the gene has repeatedly become defunct in approximately 24 separate lineages of angiosperms, including almost all rosid species. In four species ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 41 شماره
صفحات -
تاریخ انتشار 2018